San Francisco Earthquake Safe
This one is less boring for the public than the others. Hell, I don't know; maybe it's more boring. But warning: it's pretty long. It's about a job I did a couple of years ago. It involved opening a safe that was in a downtown building that got destroyed by the devastating fires that raged as result of the 1906 earthquake that destroyed San Francisco. This story originally ran in the industry newsletter I publish.
I've been hearing and reading earthquake history ever since I moved to this area, but never guessed I'd have even a small part in recovering any of the history on it.
I got a call from a construction foreman. While remodeling a downtown
San Francisco building, his workers had unearthed a large old safe under a
basement floor. The safe had been buried since the 1906 earthquake that destroyed most of downtown San Francisco.
Though
he wasn’t clear on how the main outer double door safe got opened, it was gone. All that remained was
a small, heavy chest that was found inside the big one. Locked shut.
He
couldn’t describe the chest well enough to give me an inkling. I told him to
email photos. Pictures beat struggling to understand callers’ safe
descriptions, and are better than traveling to hear “Thanks for looking.”
The
photos he sent were of a MacNeale & Urban pressure chest, the type commonly
installed in large fire safes. A year earlier I’d opened an identical “found”
chest (see below). That one had some rust and corrosion, but after having been buried for a century, this one gave new meaning to
the term “rust bucket.”
Feasible
nonetheless, I thought, so I gave an open-only price. He thanked me, said he
might call back soon. He did, and we scheduled. On opening day, though, he
postponed.
According
to him, an archaeological consulting company was now part of the equation.
Invoking higher authority (the building and by extension the safe’s owners),
the archaeologists immediately forbade anyone to do anything to the rusted
chest. The foreman said I’d probably hear from one of them.
Archaeologists.
. . ? As far as I knew, this was just
another “found” safe, an old, rusted mess.
Soon
after that, a man named Joe called, saying he was the archaeologist who would
be handling the safe. I asked him how the job had devolved from me dealing with
construction roustabouts to scientists of antiquity.
Joe
explained: The building under which the safe had been buried was built
immediately after the San Francisco earthquake of 1906. That monster quake
knocked down plenty of buildings, but the real devastation came afterward.
Fires
broke out all over The City and burned out of control for days. The building
that housed the safe burned and collapsed. The MacNeale & Urban had
apparently done a classic crash-through to the basement when the floor under it
burned out.
The
weeks, months, and years after the `06 quake and fires were consumed by
recovery work and rebuilding. Many
businesses paid drayage companies to haul their charred safes from the ruins in
hopes of recovering contents.
The
MacNeale & Urban in question had obviously been left where it landed. The
current building was built over the ruins of the first one.
Joe
and I agreed there were various possible explanations for why the “found” safe
never got recovered:
a) The safe’s owner
might have had a chance between the early morning quake and the outbreak of the
fires to have reached his offices and emptied outer and inner safes of
valuables. In that case, nothing left to recover.
b) The owner could
have been killed in the quake, or in the fires, epidemics, and civil unrest
that followed.
c) The owner could
have survived, but might have concluded that safe and contents were a total
loss, and decided to leave it where it had fallen.
Over
a century later, here it was, exhumed, rusted, corroded, and closed. The
foreman said that the outer safe was found open and empty, and that the inner
safe was loose inside. I’m not sure if everyone believed that. I wasn’t there
when the outer safe was found, but the inner safe appeared to have been
forcibly torn from its wall moorings inside the outer safe. There were still
sheets of the outer safe’s wall attached to the smaller safe’s sides. Falling
doesn’t do that.
The
safe had in all likelihood been owned by a business in the building. Exactly
which business wasn’t clear. Joe also told me the outer safe had an owner’s
name painted on it and researching the name had unearthed some intriguing
information: The original safe owner was Barrett & Sherwood, Watch & Chronometer Makers.
Throughout
the last half of the nineteenth century Barrett & Sherwood was one of the
very few (if not the only) places on the Pacific coast where a ship’s master
could have his vessel’s chronometer repaired and calibrated. In the days of
celestial navigation, an inaccurate chronometer put a ship at risk of being
off-course by anywhere from miles to hundreds of miles.
Barrett
& Sherwood erected an observatory with a tower that was visible from the
deck of every ship in the harbor. Every day, at what they represented as
“nearly noon,” a ball would be dropped from Barrett &Sherwood’s tower. The
exact second of the drop was a secret, answer available by subscription. (Perhaps
explaining the origins of the New Year’s Eve ball-drop at Times Square?)
It
worked like this: A ship’s master would watch for the noon ball drop. Reading
from his own chronometer, he would note exactly how many seconds before or
after noon the drop occurred. After accumulating at least three days’
notations, paid subscribers would be notified of the precise times of the drops
for the noted days. By averaging, then, a ship’s master could calculate the
error of his own chronometer against the (presumably correct) times of Barrett & Sherwood’s main chronometer,
then factor that in his navigational calculations at sea.
Why
not just bring the chronometer ashore for hand calibration and adjustment on
Barrett & Sherwood’s workbench? Many ship’s masters did so, but there were
at least two justifications for using the observatory method.
Ship’s
chronometers had to be the most accurate timepieces money could buy. And
rightly so, considering that seamen’s lives and livelihoods depended on
reliable navigation, which was impossible without accurate chronometers.
Detaching a ship’s chronometer from its mount, carrying it from ship to shore
by dinghy, then by foot or carriage down crowded unpaved streets to a workshop
was to risk accidental damage. One stumble, one fumble, or a bad bouncing over
a rutted street, and a chronometer could be irreparably broken. Once calibrated,
there was the same risk on the return trip to the ship. Some ships’ masters
thought it too risky.
Second,
a ship chronometer was the high technology of the era. Masters of foreign ships
needed to do their trading and provisioning in ports, but many were uneasy
about allowing their most sensitive instrumentation to be out of their sight,
in the hands of others. All of which made observatory calibration via the
ball-drop method preferable for some shipmasters.
While
that was interesting information to learn, it still wasn’t clear who owned and
used the safe in question when the 1906 earthquake occurred.
Sketchy
records showed that Barrett & Sherwood operated in San Francisco from 1852
to 1902, and that their observatory tower was at 161 Clay St. The safe was
found under a building located at 1 Kearny St., several blocks away.
Furthermore, The original 1 Kearny St. building was built in 1902.
It’s
possible that the safe was bought when (and if) Barrett & Sherwood
supposedly dissolved in 1902. Maybe the company assets were sold off. The safe
might have been hauled from its original home at 161 Clay to 1 Kearny and used
by a new owner until 1906. Another
possibility was that the Barrett & Sherwood Observatory on Clay St. was an
observatory only, and that the company conducted business at 1 Kearny.
Nobody
knew for sure, but regardless of who last owned the safe, it was thought that
because it was never hauled out of the ruins, the inner chest might still hold
contents.
I
understood then. The San Francisco Earthquake of 1906 has been studied,
researched, written about, commemorated, and depicted ad nauseam in the
years since. Anything related to it still commands high interest. The
reasoning, then, was that anything found in the safe had potential historic
value. Hence the archaeologists.
Joe
asked some questions about the inner safe and my plans for opening it. He
wanted to know if I knew the maker’s name, was I familiar with that kind of
safe, did I think I could get it open without damaging whatever might be
inside, and what method(s) I would be using to do the opening.
After
hearing my answers and assurances, he said I’d probably hear back, and we hung
up. A week later a lady from his company called with similar questions. She
asked for pricing, saying the job had to be witnessed, and that the swinging of
the door would need to be on video.
As
interesting as it all sounded, I realized this job had potential for turning
into a festival of aggravation. I
envisioned a variety of delays and annoyances: Getting in and out of the
building and to the safe, multiple parking meter feedings, Q&A sessions
with whoever was present, people in my way, and the inevitable impatient
onlookers who start asking “how much longer do you think it will take?”
five minutes after a job starts.
The
best defense is to levy surcharges for them. Aggravate the safecracker,
aggravate the price. So I made stipulations, with dollar costs for
noncompliance:
I
insisted on a prep visit, during
which I would remove major surface rust, then apply copious amounts of
penetrating fluid to doorjamb, handle arbor, dial spindle, hinges, and pressure
cams.
For
that I needed them to position the safe with door facing the ceiling, and
included that as a condition.
They
could bring as many onlookers/witnesses as they liked, I said, but all present
had to sit quietly, out of my immediate work area. I recommended bringing something to read.
Last,
payment upon job completion, definitely not contingent upon whether or not they
found contents. I like science and
history just fine, but eating regularly ranks right up there on my list of
priorities.
There
was a communications lull of a few weeks. Then the lady emailed to acknowledge
and say they wanted to do it the next week. We scheduled.
I
visited on a Thursday morning and met Joe the archaeologist. He wanted to be
present for every phase. We went up to a secured empty floor of the building,
where the safe sat on a dolly, door facing the ceiling, per my stipulation.
Basics
first: I scraped, wire-brushed, and
blew off the loose rust and scale, then started flooding the jamb with
rust-penetrating PB Blaster. Next I flooded the handle arbor base and tested
for movement on dial and bolt control handle. The dial was frozen solid. Light
tapping on the bolt control handle with a dead blow hammer seemed to be getting
a teensy bit of movement, but it was actually the threaded end of the cast grip
bending a little just before it snapped off.
Drat
. . . I’d half-expected that.
Besides, I’d warned Joe there would be damage. No matter; there was still a big
sturdy arbor end to clamp a vise grip onto if need be.
I
managed to remove the screwed-on lettered dial intact. However, a large vise
grip on the spindle couldn’t get even fractional movement.
Judging
from the safe’s exterior and its history, I’d have been surprised not to
find the spindle rust-frozen. The spindle was steel, very closely-fitted when new, probably punch-and pull-resistant
and therefore trapped in the steel door laminations.
Based
on having opened the other identical MacNeale & Urban a year before, I knew
this door was comprised of five screwed-together laminations of half-inch
steel, with laminations alternating from mild, hardened, mild, hardened, and
finally mild.
I
left the dial ring in place so it could act as a tinker’s dam, then flooded it,
creating a little lake of penetrant around the spindle end. After flooding the
handle arbor some more, I used the remainder on the jamb edges.
I
wanted to return Friday or Saturday for one more flooding session, but was told
there wouldn’t be anyone to give me access. We agreed to meet and begin in
earnest first thing Monday morning, then left.
On
Monday Joe and the building manager met me outside and we went upstairs. There
was still no hint of movement on handle arbor or dial, but the pressure handle
was movable. No visible in-out door play, but there’s little or no play when a
pressure door is in excellent condition.
Because
I thought I knew which lock was inside, my plan was to make a first hole into
the lock at the drop-in point. It wasn’t like I expected to probe wheel gates
into place. That would have been wishful thinking with the spindle and driver
immobilized. Even if that were somehow possible, an immovable driver would
preclude bolt retraction.
My
reason for doing it was just to see if the wheels and especially the lever had
any wiggle. That answer would dictate my next step.
If
wheels and lever had movement, I planned to drill for the screw attaching the
lever to the lock bolt and probe the bolt back. If I found the lever immovable,
I’d have to assume the lock bolt was, too. If that turned out to be the case,
my plan was drill to the lock bolt just outside the case, then punch it out of
the handle cam’s way.
Once
the lock was neutralized, the grunt work could begin: Side-drill to each of the
four door bolts’ ends and drive them back.
Drilling
to the drop area wasn’t difficult with a lever rig and bits. While
drilling, I got further evidence of through-and-through rusting. The bit popped
into an air gap between two of the
laminations, and as it dug into the next lamination a little puff of rust dust
shot out around the flutes.
After
drilling to the bronze of the lock case, I switched to a high speed bit to
minimize burring at breakthrough. When
the hole was finished I wasn’t seeing what I expected to see. A piece of metal
angled upward across the left third of the entry hole. It wiggled a little when
probed, but not much. If there were any top edges of driver or combination
wheels to be seen, this piece was blocking my view. Whatever was to its right
wasn’t movable, though.
After
puzzling over this, I decided to drill another hole where a diagram I had showed the lever screw. I figured on drilling it out and probing to
retract the lock bolt. The fact that something in that lock could still wiggle
after a century made me feel that was still feasible.
That
second hole took about the same time and effort; unremarkable.
A
peek into the lock did not, however, show me the lever screw. More scoping and
probing; what I’d come in on also had a little wiggle to it. But what?
One
parking-meter-feeding break later I
thought I had it figured out: The damned lock bolt was already retracted.
Extensive peeking with first a 90° then a 70° scope seemed to verify this. The
thing that was angled across my drop-in hole was the arm of the lever, pulled
back to where it should be at bolt retraction. Fence and lever nose naturally
weren’t visible, because bolt retraction
moves both parts out of the drop-in hole’s line of view.
Two possibilities: When
the entire safe fell to the basement, then, the inner chest had apparently had
its door closed and pressured inward for door bolt clearance and extension, but
the combination lock bolt hadn’t been extended.
Or, perhaps the last
person to close the inner door had left the safe on “day lock” or “day hitch.”
In other words, combination wheels, gates still dialed to alignment and the
dial just turned the short distance necessary to extend the lock bolt. People
disliked redialing as much then as now. It was conceivable that the major
jostling that had to have occurred as the entire safe fell and landed in the
basement had allowed the substantial lock bolt to retract by inertia alone.
I
didn’t feel too badly about the time spent drilling and scoping just to learn
this. The rust-frozen dial and spindle hadn’t lent themselves to any
diagnostics. “So,” I told myself, “all I need to do next is figure
out measurements to get me on the four bolt ends, mark, drill for them, and
drive them back.” I scaled measurements from the photos of the earlier
MacNeale & Urban, applied them to the safe sides, and drilled.
The
side drilling went faster than the door drilling, but I wasn’t racing anybody.
The first drilled hole came in a little low. I opened it up to a larger
diameter in order to keep my punch as much on the bolt end as possible. Using a
corrected measurement, I drilled the other three holes without incident.
Before
starting to punch, I trained the snorkel tube from another can of PB Blaster on
each of the bolts and gave them all a bath. I also locked a large vise grip on
the end of the handle arbor to give me a visual reference on any
bolt/cam/handle movement my effort might be having.
The
first punching interlude was on the opening side of the door. The vise grip I’d
locked onto the handle arbor never wiggled. Enlarging the holes allowed bigger
punches, but still nothing. Thinking that this situation might be helped by a
more balanced distribution of punching impacts, I took my business over to the
hinge-side door bolts’ ends.
Before
starting to punch I sprayed more penetrant on the bolts where they disappeared
into their guide rails. I wasn’t counting on the penetrating fluid to work any
miracles, though. When looking over my photos of the other M&U chest I’d
opened, I’d counted at least a dozen areas where the bolts and their guide
rails could have rusted and corroded together. However, I reasoned that it
couldn’t hurt either.
My
punching was vigorous to say the least. It didn’t seem to be doing a damned
thing, so after a good series of alternating smacks on the hinge side bolt ends
I went back and balanced the effort on the opening side.
The
job was starting to suck in a big way. No apparent progress on the opening
side, so back to the hinge side. More alternating smacks, then I finally
noticed a little of that “squishy” (for lack of a better word) feel one gets
when there’s some give to what you’re punching. Instead of stopping and looking
again I gave several more heavy shots to each bolt. Then I looked.
The
hinge side bolts were almost flush to their guide rails. Looking good there,
but when I had a look at the opening side bolts there was no change. I gave
them a few more smacks, but still no change. I was disappointed to say the
least. Ordinarily all the bolts on that door design move together.
I
smacked some more, but it was closing in on downtown towaway time. The City’s
meter maids and their flying tow truck monkeys have that part of every weekday
too well choreographed to trust luck. I made a plan with the archaeologist to
resume work the following morning.
In
the interim, I thought it over: All the bolts were yoked; designed to move
together. If the two on the hinge side had moved independently of the two on
the opening side, whatever connection was yoking the two sets of bolts had to
have been broken by my hinge-side punching.
Also,
despite the lost connectivity, the fact that the first two bolts moved suggested
that whatever rusting and corrosion existed wasn’t severe enough to completely
preclude side-punching.
If
so, what was blocking the remaining two bolts’ movement? I’d already seen that the combination lock bolt was
retracted, right? But had I really seen clear airspace where the lock bolt sits
when doing its job?
No.
My two holes into the lock had entered the body, not the area outside the body.
Verify clearance, right?
The
way I figured it, I had a choice of drilling to get to that space where an
extended lock bolt would be, or just assume part of the lock was still extended
and drill for a very simple and basic cam punching exercise.
When
I returned the next day I chose the first option. My reasoning was that as
simple as it sounded, punching the relatively beefy cam might create a further
handle shaft bind, and make the movement I needed to impart to it even more
difficult to achieve.
Better
to get a hole into the lock bolt extension area first and have a look. If the
bolt was still extended I could smack it off through that hole. If not, I could
look up, see the cam (I hoped) and figure out my next move.
That
was how I started the day, then: A hole drilled to the space where the lock
bolt would be when extended.
Once
it was made, I put a scope in there and got the picture: The handle cam was
indeed visible, and its movement was blocked by about 3/32” of the “retracted”
lock bolt. It’s always so simple and obvious when you know the answer, isn’t
it?
A
little more work enlarging the hole to the lock bolt area allowed me to wedge
it that little bit further into the lock body. When I could visually verify the
clearance I went back to the side and started whaling on the punches again.
Even with the clearance the handle cam needed it still took a lot more smacks
to move the two bolts.
When
the big vise grip I’d locked onto the handle arbor finally showed fractional
movement, I began alternating between bolt-punching and smacking the vise like
a cheater bar. Finally I looked into the side holes and the last two bolts were
beaten back.
At
that point it was just a matter of swinging the door. I told Joe the
archaeologist. He called the building manager, who needed to collect the
building owner and some others, then Joe called his office and had them send
over the videographer. We broke for coffee while the party assembled, then
returned.
The
videographer wanted the door to remain facing the ceiling so the light would be
better, so we left the safe on the dolly. Working against gravity like that
required locking vise grips onto the pressure bar, because I really didn’t know
what to expect from the cast pressure handle.
Once
the door started outward I had to do
some wedging and prying to overcome the hinge side’s tendency to want to stay
behind and cause more of a jam (remember, this door had center-pivot crane
hinge, so it wanted to rock as it swung). Once I’d wedged the tips of a couple
of pry bars securely under the edge, I paused and told everyone to keep their
hands at their sides if they saw my prying tools losing their grip. If that
happened, I told them, I’d simply wedge and pry again. I didn’t want any
valiant grabs by any onlooker who wanted to help if they saw the door falling
shut.
It
did slip back a couple of times before I had a good wedge, but I finally got it to
come out squarely and swung it upward. The hinge rust and corrosion was so
pronounced that getting the door to 90° open took some muscle, and then it
stood upright without support.
More
cautions to all present that no hands should be reaching into the safe interior
while the door was like that, then everyone moved in closer to peer at the . .
. CONTENTS!
I
don’t usually do much rubbernecking at customers’ safe contents, but this time
was different because of the historical slant to the job. The onlookers were an
orderly bunch, waiting obediently a few steps back until I gathered tools
before motioning them forward.
Joe
removed each item from the chest as if on an archaeological dig, using gloves,
a long forceps, and extreme care. Needless to say, it went very slowly. I had
to leave before everything was laid out
on the acid-free paper Joe had spread across a nearby desktop. He told me about
the items of interest later and sent me the contents photo shown on this page.
Joe
described the singed papers as being like baklava crust, thin, curled, brittle,
and extremely fragile. Much of the printed material was illegible, but among
the more easily identified items: An old Wabash Railroad train schedule, an old
ticket for a train trip to Monterey, and some banking papers. Of more interest
were the four gold Krugers, a stickpin, a ring, and a brooch.
Joe
is still trying to learn who last owned the safe.
Comments